Higher index theory for certain expanders and Gromov monster groups I

نویسندگان

  • Rufus Willett
  • Guoliang Yu
چکیده

In this paper, the first of a series of two, we continue the study of higher index theory for expanders. We prove that if a sequence of graphs is an expander and the girth of the graphs tends to infinity, then the coarse Baum-Connes assembly map is injective, but not surjective, for the associated metric space X. Expanders with this girth property are a necessary ingredient in the construction of the so-called ‘Gromov monster’ groups that (coarsely) contain expanders in their Cayley graphs. We use this connection to show that the Baum-Connes assembly map with certain coefficients is injective but not surjective for these groups. Using the results of the second paper in this series, we also show that the maximal Baum-Cones assembly map with these coefficients is an isomorphism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher index theory for certain expanders and Gromov monster groups II

In this paper, the second of a series of two, we continue the study of higher index theory for expanders. We prove that if a sequence of graphs has girth tending to infinity, then the maximal coarse Baum-Connes assembly map is an isomorphism for the associated metric space X. As discussed in the first paper in this series, this has applications to the Baum-Connes conjecture for ‘Gromov monster’...

متن کامل

Small Cancellation Labellings of Some Infinite Graphs and Applications

We construct small cancellation labellings for some infinite sequences of finite graphs of bounded degree. We use them to define infinite graphical small cancellation presentations of groups. This technique allows us to provide examples of groups with exotic properties: • We construct the first examples of finitely generated coarsely nonamenable groups (that is, groups without Guoliang Yu’s Pro...

متن کامل

Systolic Expanders of Every Dimension

In recent years a high dimensional theory of expanders has emerged. The notion of combinatorial expanders of graphs (i.e. the Cheeger constant of a graph) has seen two generalizations to high dimensional simplicial complexes. One generalization, known as coboundary expansion is due to Linial and Meshulem; the other, which we term here systolic expansion, is due to Gromov, who showed that systol...

متن کامل

Singularities, Expanders and Topology of Maps. Part 2: from Combinatorics to Topology via Algebraic Isoperimetry

We find lower bounds on the topology of the fibers F−1(y) ⊂ X of continuous maps F : X → Y in terms of combinatorial invariants of certain polyhedra and/or of the cohomology algebras H∗(X). Our exposition is conceptually related to but essentially independent of Part 1 of the paper.

متن کامل

Traffic Congestion in Expanders and (p, δ)-Hyperbolic Spaces

In this paper we define the notion of (p, δ)–Gromov hyperbolic space where we relax Gromov slimness condition to allow that not all but a positive fraction of all the triangles are δ–slim. Furthermore, we study their traffic congestion under geodesic routing. We also construct a constant degree family of expanders with congestion Θ(n) in contrast to random regular graphs that have congestion O(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011